Activation and Loss Functions in Deep Learning

Muskula Rahul

Introduction

Activation and loss functions are fundamental components in deep learning architectures. They play crucial
roles in both the forward propagation of signals and the backward propagation of gradients during model
training. This document provides an in-depth analysis of common activation and loss functions, their
mathematical foundations, and practical applications.

Activation Functions

Activation functions introduce non-linearity into neural networks, enabling them to learn complex patterns.
Let’s examine key activation functions and their properties. Some Common Activations Functions Are -

e Rectified Linear Unit (ReLU)

Leaky ReLU

Sigmoid Function

Hyperbolic Tangent (tanh)

Softmax Function

Exponential Linear Unit (ELU)

Scaled Exponential Linear Unit (SELU)

1.Rectified Linear Unit (ReLU)

The ReLU function is currently the most widely used activation function in deep learning. Its popularity
stems from its computational efficiency and effectiveness in addressing the vanishing gradient problem.

RelU Activation Function

Figure 1: ReLU Function

neuralnets.dev Muskula Rahul

Mathematical Definition:

z ifx>0
= 0’ =
f(z) = max(0,z) {0 ifz<0
Derivative:
1 ifz>0
fl(x)=<X0 ifx<0

undefined if x =0
Key Properties:
e Non-saturating for positive values
e Sparse activation (approximately 50 percent of neurons are typically active)
e Computationally efficient
e Helps mitigate vanishing gradient problem
Use Cases:
e Default choice for hidden layers in deep neural networks
e Particularly effective in Convolutional Neural Networks (CNNs)
e Computer vision applications

e Deep architectures with many layers

2.Leaky ReLU
Leaky ReLLU addresses the "dying ReLU” problem by allowing a small gradient when the unit is not active.

Leaky RelLU Activation Function

Figure 2: Leaky ReLU Function
Mathematical Definition:

axr ifz<0

xz ifx>0
-]
where « is typically a small constant like 0.01.

Derivative:
1 ifz>0
! _
f(x)_{a ifx<0

https://neuralnets.dev

neuralnets.dev Muskula Rahul

Key Properties:

e Prevents dead neurons
e Allows negative gradients
e Generally maintains the benefits of ReLLU

e Parameter a can be learned (Parametric ReLU)
Use Cases:

e Alternative to ReLU when dead neurons are a concern
e Deep networks where gradient flow is critical

e Tasks requiring negative value preservation

3.Sigmoid Function

The sigmoid function maps inputs to values between 0 and 1, making it useful for probability-based predic-
tions.

Sigmoid Activation Function

0.8

0.6

(x)

0.4
0.2

0.0

-4 -2 0 2 4

Mathematical Definition:

Derivative:

Key Properties:

e Output range (0,1)

e Smooth gradient

e Clear probabilistic interpretation

e Suffers from vanishing gradient for extreme values

Use Cases:

Binary classification output layers

Gates in LSTM and GRU units

Probability estimation tasks

e Legacy networks (historically popular)

https://neuralnets.dev

neuralnets.dev Muskula Rahul

4.Hyperbolic Tangent (tanh)

Tanh is a scaled and shifted version of the sigmoid function, mapping inputs to the range (-1,1).

Tanh Activation Function

-0.25
-0.50
=0.75

-1.00

Figure 4: Tanh Function

Mathematical Definition:
et —e "

et e~ %

f(z) = tanh(z) =

Derivative:
f'(x) =1 — tanh?(z)

Key Properties:
e Output range (-1,1)

Zero-centered

Stronger gradients compared to sigmoid

Still suffers from vanishing gradient at extremes

Use Cases:

Hidden layers in shallow networks

NLP tasks

LSTM/GRU internal states

e (Cases requiring normalized outputs

https://neuralnets.dev

neuralnets.dev Muskula Rahul

5.Softmax Function

The softmax function generalizes the logistic function to handle multiple classes, converting a vector of values
into a probability distribution.

Softmax Activation Function

0.8

e
o

— Class 1
Class 2
—— Class 3

Probability
°
IS

0.2

0.0
-4 -2 0 2 4

Figure 5: Softmax Function

Mathematical Definition: For a K-dimensional vector x:

evi
softmax(z;) = —7——
Zj:l et
Derivative: Fori =]
Osoft i
Gsoftmax(z:) = softmax(z;)(1 — softmax(x;))
(9$j
and For i j
Osoft i
%ax(x) = —softmax(x;)softmax(z;)
€ 5 ’

Key Properties:

e Outputs sum to 1

e Squashes values to range (0,1)
e Preserves relative ordering

Differentiable

e Emphasizes largest values while suppressing lower ones

Use Cases:

Multi-class classification output layers

Attention mechanisms in transformers

Policy networks in reinforcement learning

Probability distribution generation

https://neuralnets.dev

neuralnets.dev Muskula Rahul

6.Exponential Linear Unit (ELU)

ELU provides smoother gradients compared to ReLLU variants while maintaining most of their benefits.

ELU Activation Function

f(x)

Mathematical Definition:

f(:n):{x ifz >0

ale® —1) ifx<0

Derivative:

o) = {1] if >0
ae® fx<0
Key Properties:
e Smooth function including negative values
e Reduces bias shift
e Self-regularizing properties
e Computationally more expensive than ReLU

Use Cases:

e Deep neural networks requiring smooth gradients

Tasks sensitive to negative values

Networks requiring strong regularization

e Alternative to batch normalization

https://neuralnets.dev

neuralnets.dev Muskula Rahul

7.Scaled Exponential Linear Unit (SELU)

SELU enables self-normalizing properties in neural networks, automatically pushing activations toward zero
mean and unit variance.

SELU Activation Function

f(x)

Figure 7: SELU Function

Mathematical Definition:
T ifx>0

afe”—1) itz <0

where: a ~ 1.676 and A ~ 1.0507
Key Properties:

e Self-normalizing

e Maintains consistent mean and variance

e Robust to perturbations

e Requires specific initialization (LeCun normal)
Use Cases:

e Deep networks without batch normalization

e Networks requiring stable training

Applications with limited computational resources

Tasks requiring strong regularization

https://neuralnets.dev

neuralnets.dev

Muskula Rahul

Loss Functions

Loss functions quantify the difference between predicted and actual values, guiding the optimization process
during training. Common Losss Functions Include -

1.Mean Squared Error (MSE)

Mean Squared Error (MSE)
Binary Cross-Entropy Loss

Focal Loss
Huber Loss
Hinge Loss

MSE is the most common loss function for regression tasks.

Mathematical Definition:

Derivative:

Key Properties:

Heavily penalizes large errors

Differentiable everywhere

Non-negative
Convex function

Sensitive to outliers

Use Cases:

Regression problems

25

20

Mean Squared Error Loss Function

-2 0 2
Prediction Error

Figure 8: MSE Loss

1 n
MSE = — i — 0i)?
SE=—> (v —)

i=1

When outliers are rare or meaningful

When large errors should be heavily penalized

Signal processing applications

https://neuralnets.dev

neuralnets.dev Muskula Rahul

2.Binary Cross-Entropy Loss

Binary Cross-Entropy (BCE) is fundamental for binary classification tasks, measuring the difference between
predicted probabilities and true binary labels.

Binary Cross-Entropy Loss Function

Loss

-4 -2 0 2 4
Model Output

Figure 9: Binary Cross-Entropy Loss

Mathematical Definition:
| X
BCE = -+ > lyilog(@:) + (1 — yi) log(1 — §)]
i=1

where:
e y; is the true label (0 or 1)
e y; is the predicted probability
e N is the number of samples
Derivative with respect to logits (before sigmoid):

OBCE
dr

o(x)—y

where o(z) is the sigmoid function.
Key Properties:

e Bounded between 0 and

e Provides stronger gradients than MSE for probabilities
e Works well with probabilistic predictions

e Natural pairing with sigmoid activation

Use Cases:

Binary classification

Generative Adversarial Networks (GANs)

Anomaly detection

Multi-label classification (per-label)

https://neuralnets.dev

neuralnets.dev Muskula Rahul

3.Focal Loss

Focal Loss addresses class imbalance by down-weighting easy examples and focusing on hard ones.

Focal Loss Function

Loss

0.4 0.6
Predicted Probability
Figure 10: Focal Loss

Mathematical Definition:
FL(pt) = —az(1 — p)” log(pe)

where: - p; is the model’s estimated probability for the true class - 7 is the focusing parameter (typically
2) - a4 is the class balancing factor
Key Properties:

e Reduces impact of easy examples

e Automatically handles class imbalance
e Tunable focus on hard examples via
e Generalizes cross-entropy loss (7 = 0)

Use Cases:

e Object detection

Highly imbalanced datasets

Dense prediction tasks

Medical image segmentation

https://neuralnets.dev

neuralnets.dev Muskula Rahul

4.Huber Loss

Huber Loss combines the best properties of MSE and Mean Absolute Error (MAE), being less sensitive to
outliers than MSE while maintaining differentiability.

Huber Loss Function

0
Prediction Error

Figure 11: Huber Loss

Mathematical Definition:

1 N2 S
X 3(y—19 for [y —g| < ¢
Lﬁ(yay) = 2(~) 1¢2 | . |
dly — 9| — 56 otherwise
Derivative:
OLs _ Jy—19 for [y —g| <o
oy - sign(y — §) otherwise

Key Properties:

e Combines MSE and MAE benefits
e Robust to outliers

e Differentiable everywhere

e Adjustable sensitivity via

Use Cases:

e Regression with outliers

Robust optimization

Reinforcement learning

Time series prediction

https://neuralnets.dev

neuralnets.dev Muskula Rahul

5.Hinge Loss

Hinge Loss is primarily used in Support Vector Machines and margin-based learning.

Hinge Loss Function
4.0
35
3.0

25

-3 -2 -1 0 1 2 3
Decision Function Value

Figure 12: Hinge Loss

Mathematical Definition:
L(y,9) = max(0,1 — y7)

where y € {—1,1} and § is the model’s prediction.
Key Properties:

e Maximum margin classification
e Non-differentiable at hinge point
e Sparse gradients

e Focus on margin violations

Use Cases:

Support Vector Machines

e Maximum margin classifiers

Structured prediction

Online learning algorithms

https://neuralnets.dev

neuralnets.dev Muskula Rahul

Code Samples

For Activation Functions

import numpy as np
import tensorflow as tf

Activation Functions

1. ReLU
def relu(x):
return tf.nn.relu(x) # or np.mazimum(0, z) for NumPy

2. Leaky ReLU
def leaky_relu(x, alpha=0.01): # alpha <s the leak coefficient
return tf.maximum(alpha * x, x) # or np.where(z > 0, z, = * alpha) for NumPy

3. Sigmotd
def sigmoid(x):
return tf.sigmoid(x) # or 1 / (1 + np.exp(-z)) for NumPy

4. Tanh
def tanh(x):
return tf.tanh(x) # or np.tanh(z) for NumPy

5. Softmaz
def softmax(x):
return tf.nn.softmax(x)

6. ELU (Ezponenttal Linear Unit)
def elu(x, alpha=1.0): # alpha is a hyperparameter
return tf.nn.elu(x) # TensorFlow handles ELU directly

7. SELU (Scaled Ezponential Linear Untit)
def selu(x):
alpha = 1.673
scale = 1.0507
return scale * tf.where(x >= 0.0, x, alpha * tf.exp(x) - alpha)

https://neuralnets.dev

neuralnets.dev Muskula Rahul

For Loss Functions

1. MSE (Mean Squared Error)

def mse(y_true, y_pred):
return tf.reduce_mean(tf.square(y_true - y_pred))
or np.mean(np.square(y_true - y_pred)) for NumPy

2. Binary Cross—Entropy
def binary_crossentropy(y_true, y_pred):
return tf.reduce_mean(tf.keras.losses.binary_crossentropy(y_true, y_pred))

3. Focal Loss (requires a bit more setup)
def focal_loss(y_true, y_pred, gamma=2.0, alpha=0.25):
y_pred = tf.clip_by_value(y_pred, le-7, 1.0 - 1le-7)
avoid numerical instability
pt_1 = tf.where(tf.equal(y_true, 1), y_pred, tf.ones_like(y_pred))
pt_0 = tf.where(tf.equal(y_true, 0), y_pred, tf.zeros_like(y_pred))
return -tf.reduce_sum(alpha * tf.pow(l. - pt_1, gamma) * tf.math.log(pt_1))
- tf.reduce_sum((1 - alpha) * tf.pow(pt_0O, gamma) * tf.math.log(l. - pt_0))

4. Huber Loss
def huber_loss(y_true, y_pred, delta=1.0):
return tf.reduce_mean(tf.keras.losses. huber(y_true, y_pred, delta=delta))

5. Hinge Loss
def hinge_loss(y_true, y_pred): # For multi-class, use categorical_hinge
return tf.reduce_mean(tf.keras.losses.hinge(y_true, y_pred))

Example of using the functions (TensorFlow)

x = tf.constant([-2.0, -1.0, 0.0, 1.0, 2.0])
print ("ReLU:", relu(x))

y_true = tf.constant([O, 1, O, 1, 1])
y_pred = tf.constant([0.1, 0.9, 0.2, 0.8, 0.7]1)
print ("Binary Cross-Entropy:", binary_crossentropy(y_true, y_pred).numpy())

Ezample with NumPy (replace tf functions with their NumPy equivalents
x_np = np.array([-2.0, -1.0, 0.0, 1.0, 2.0])
print ("NumPy ReLU:", np.maximum(O, x_np))

y_true_np = np.array([0, 1, O, 1, 1])
y_pred_np = np.array([0.1, 0.9, 0.2, 0.8, 0.7]1)
print ("NumPy MSE:", np.mean(np.square(y_true_np - y_pred_np)))

https://neuralnets.dev

neuralnets.dev Muskula Rahul

Activation-Loss Pairings
Common effective combinations:
e - Softmax + Categorical Cross-Entropy
e - Sigmoid + Binary Cross-Entropy
e - Linear + MSE/Huber
e - ReLU/ELU + Any Loss (hidden layers)

Conclusion

Neural networks are powerful tools for learning complex patterns from data. Forward and backward propa-
gation are the core algorithms that drive their training. The choice of architecture, loss function, optimizer,
and regularization techniques plays a crucial role in the success of a neural network application. Contin-
uing research and development in the field of deep learning are constantly expanding the capabilities and
applications of neural networks.

https://neuralnets.dev

